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Abstract In gene networks, it is possible that the patterns of gene co-expression may
exist only in a subset of the sample. In studies of relationships between genotypes and
expressions of genes over multiple tissues, there may be associations in some tissues
but not in the others. Despite the importance of the problem in genomic applications,
it is challenging to identify relationships between two variables when the correlation
may only exist in a subset of the sample. The situation becomes even less tractable
when there exist two subsets in which correlations are in opposite directions. By
ranking subset relationships according to Kendall’s tau, a tau-path can be derived to
facilitate the identification of correlated subsets, if such subsets exist. However, the
current tau-pathmethodology only considers the situation in which there is association
in a subsample; the more complex scenario depicting the existence of two subsets with
opposite directionality of associations was not addressed. Further, existing algorithms
for finding tau-paths may be suboptimal given their greedy nature. In this paper, we
extend the tau-path methodology to accommodate the situation in which the sample
may be drawn from a heterogeneous population composed of subpopulations portray-
ing positive and negative associations. We also propose the use of a cross entropy
Monte Carlo procedure to obtain an optimal tau-path, CEMCtp. The algorithm not
only can provide simultaneous detection of positive and negative correlations in the
same sample, but also can lead to the identification of subsamples that provide evi-
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dence for the detected associations. An extensive simulation study shows the aptness
of CEMCtp for detecting associations under various scenarios. Compared with two
standard tests for detecting associations, CEMCtp is seen to be more powerful when
there are indeed complex subset associations with well-controlled type-I error rates.
We applied CEMCtp to the NCI-60 gene expression data to illustrate its utility for
uncovering network relationships that were missed with standard methods.

Keywords Cross entropy Monte Carlo (CEMC) · Tau-path · Heterogeneous sample ·
Subset associations · Gene networks

1 Introduction

There is often a need to identify relationships, whichmay ormay not be linear, between
two variables. However, it is usually unknown, a priori, whether a relationship holds
over an entire sample, or only in a subset of the sample. Under some circumstances,
evenmore complex situations can arise, in which theremay be associations of opposite
directionality in two subsets, with the potential of yet other observations portraying
no association, all in the same sample. In other words, the sample is heterogeneous
in the association pattern, representing a mixture of homogeneous subpopulations of
different association directions and strengths. A number of examples in which such
scenarios may occur were discussed in the literature, including the study of association
between high-density lipoprotein (HDL) and the risk of myocardial infarction [1,2].
In gene regulatory networks, it is possible that the patterns of gene co-expression exist
only in a subset of the sample [3]. For example, the activation of a gene may have
a positive, negative, or neutral effect on another gene, depending on the underlying
cells, cancer types, or other conditions. As such, the expressions of two genes over a
set of cells may exhibit heterogeneity, with different association directions over a dif-
ferent subset of cells. As another example, the relationships between single nucleotide
polymorphisms and gene expressions over multiple tissue types can be mined from
the GTEx database [4], but such relationships are likely to be heterogeneous, as an
association may exist in some tissues, but not in the other tissues.

A number of measures are frequently used to study association between two vari-
ables. Pearson’s correlation coefficient is useful for measuring linear relationships
[5,6]. Spearman’s rank correlation [7] and Kendall’s tau [8,9], on the other hand, are
both nonparametric statistics used to measure the degree of monotonic association
between two rankings without the assumption of linearity. However, the correlation
signals of all these measures will be weakened or canceled when uncorrelated obser-
vations or correlated observations with opposite directions exist in the same sample.
This situation will occur when the observations are sampled from a heterogeneous
population containing homogeneous subpopulations with monotonic relationships.

The originally proposed tau-path offers a solution for detecting correlation that
exists only in a subset of the sample [10,11]. It is a procedure based on a sequen-
tial development of Kendall’s tau measure of monotone association. The “optimal”
sequence is achieved by reordering the observations so that the sample tau coefficients
{τk} for the first k (=2, . . . , n) of the n bivariate observations form a “maximum”
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monotonic decreasing path, ending at the usual Kendall’s tau coefficient τ (=τn)
over all the n observations. Tau-path not only can indicate whether there is measur-
able evidence of association in a subsample, but also can identify which subsample
is involved. Nevertheless, current algorithms for finding the tau-path are suboptimal
given its greedy nature [10]. Another shortcoming of the existing tau-path approach
is that it was proposed for detecting association of a single direction in a subset. As
such, the more complex correlation scenario as described above is not explored or
discussed.

To address these issues, in this paper, we present an efficient optimization algo-
rithm, Cross-Entropy Monte Carlo tau-path, CEMCtp, for finding an optimal tau-path
based on an objective criterion without resolving to exhaustive search. CEMC is an
approach originally proposed to solve difficult combinatorial problems [12]. Although
CEMC has mainly been used to solve problems in engineering and computer science,
it was successfully adapted for tagging SNP selection [13] and for rank aggregation
of results from multiple studies in genomics [14]. In addition to tackling the opti-
mization problem, we also extend the tau-path methodology to address the scenario
of two subsamples with opposite association directions in the same sample. Sim-
ulation results demonstrate the validity of CEMCtp and show that it can be more
powerful compared to other methods when the underlying population is heteroge-
neous. Importantly, when the underlying population is homogeneous, there appears
to be little loss in efficiency. Finally, to illustrate the applicability of CEMCtp to
genomic studies, we used it to analyze the NCI-60 gene expression data, leading to
the identification of several potential gene networks that were missed using traditional
approaches.

2 Methods

2.1 Tau-Path

Suppose {(x1, y1), (x2, y2), . . . , (xn, yn)} is a sample of n pairs of observations from a
population characterized by a pair of random variables (X,Y ) that may have different
correlation patterns in different subpopulations. Let p = (p(1), p(2), . . . , p(n)) be
a permutation that reorders the original observation sequence (1, 2, . . . , n) such that
p(k) = l denotes that the original observation l is now the kth ordered element under
permutation p. We use S to denote the collection of all possible permutations; thus
the cardinality of the set S is ||S|| = n!. For each permutation p ∈ S, define

τk(p) = 2
∑k−1

i=1
∑k

j=i+1 sign[(xp( j) − xp(i))(yp( j) − yp(i))]
k(k − 1)

, k = 2, . . . , n.

The sequence τ(p) = (τ2(p), τ3(p), . . . , τn(p)) is called the tau-path under per-
mutation p [10]. The goal is to find a particular permutation p∗ for which the
elements in the tau-path are “sequentially maximal monotone decreasing”, that is,
τ2(p∗) ≥ τ3(p∗) ≥ · · · ≥ τn(p∗), with each τk(p∗) being the maximum for the
reordered elements up to that point [10]. The rationale for seeking such a permu-
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tation is to facilitate the detection of a subset correlation, with the uniform full-set
association (i.e., association in a homogeneous sample) being a special case. To see
this, first note that the standard Kendall’s τ(≡τn(p)) is the same for all permutations
p ∈ S. Therefore, if all observations come from a population portraying an association
between the two variables uniformly, τn(p∗) will be the statistic used to assess the
evidence of existence of such an association. On the other hand, if the sample comes
from a heterogeneous population composed of subpopulations, then the tau-path of
permutation p∗ provides evidence of decreasing strength of a positive association (we
will multiply the observations for one of the two variables by a negative sign to assess
negative correlation). If the strength degrades substantially after a certain point, then
this provides evidence for a subset association, and the observations supporting such
an association can then be identified.

2.2 Tau-Score

We first note that p∗ may not be unique [10]. Further, the greedy nature of the algo-
rithms proposed thus far does not guarantee that a p∗ will be obtained. We consider
an alternative criterion as an approximation to the objective. Specifically, we define a
tau-score for each permutation p as T (p) = ∑n

k=2 τk(p). Our restated goal is then to
find a permutation p∗ that leads to T (p∗) achieving the maximum among all p ∈ S. In
otherwords, we seek p∗ =argmax{T (p), p ∈ S}. To gain a better understanding of the
tau-score measure, we note that T (p) is in fact a weighted average of the concordance
(+1) or discordance (−1) contribution from each pair of observations to the tau-path.
Specifically, the weight for sign[(xp( j) − xp(i))(yp( j) − yp(i))] is 2(1/j − 1/n) for
all i = 1, . . . , j − 1, which is inversely “proportional” to the order of observations
under the permutation. Therefore, the tau-score gives more weight to elements that
rank earlier under the permutation.

2.3 CEMC for Finding an Optimal Permutation

Finding the tau-path with the largest tau-score is combinatorial in nature as the number
of possible permutations is n!, and thus an exhaustive search will not be tractable
even for a sample of moderate size. To determine the best order through optimizing
T (p), we propose to adopt the CEMC approach similar to the earlier adaptations
[13,14].

The idea is to “sort” the observations through estimating the probability of each
observation being in a particular position (rank).We accomplish this by organizing the
probabilities into amatrix for applying the CEMC algorithm. Specifically, we consider
randommatrixZ = (Z jr )n∗n , inwhich each row/column vector is composed of 0’s and
exactly one 1 at a random position. We use v = (v jr )n×n to denote the corresponding
probabilitymatrix, in which the probabilities in each column always sum to 1. This can
be interpreted as each column of Z being an independent (across columns) realization
of a multinomial distribution whose probability vector is the corresponding column
in the v matrix. Thus, the probability mass function for Z can be specified as follows:
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Pv{Z = z = (z jr )n×n}

∝
n∏

r=1

n∏

j=1

(v jr )
z jr × I

⎛

⎝
n∑

j=1

z jr = 1, r = 1, . . . , n;
n∑

r=1

z jr = 1, j = 1, . . . , n

⎞

⎠ .

A realization of Z, z, uniquely determines the corresponding candidate order of the
observations (that is, determining the underlying permutation) through a deterministic
function f (z) without the need to reference the probability matrix. That is, for each
column r , the row (corresponding to an observation) with the “1” entry identifies
the observation that takes the r th rank (position in the permuted sequence) under the
permutation, r = 1, 2, . . . , n. Given the 1−1 correspondence between p and z, finding
p∗ is equivalent to finding z∗ that maximizes T ( f (z)) [13,14]. Detailed description
of an efficient algorithm for finding the optimal order can be found in [14] and is
summarized in Appendix A for the current article to be self-contained.

2.4 CEMCt p Algorithms for Determining Positive and Negative Association

We describe the steps of a CEMC tau-path algorithm for detecting (sub)samples that
are correlated in the two variables. This algorithm is designed to detect associations
in scenarios where the population may be homogeneous or heterogeneous. We use
X = {x1, . . . , xn} to denote the n observations from the first component of the bivariate
random variable, while Y = {y1, . . . , yn} denotes the n corresponding observations
from the second component.

1. Generatem permutations of Y and denote them as Y (1), . . . ,Y (m). In our examples
below, we set m = 500, as that appears to be sufficient for obtaining type-I error
rates close to the nominal values.

2. (a) Generate positive tau-paths: use CEMC OEA (Appendix A) to determine
the optimum tau-path for each of the m + 1 data sets (X,Y ), (X,Y (1)), . . . ,

and (X,Y (m)), and denote them as τ+ =
(
τ

(+)
2 , . . . , τ

(+)
k , . . . , τ

(+)
n

)
, τ (+l) =

(
τ

(+l)
2 , . . . , τ

(+l)
k , . . . , τ

(+l)
n

)
, l = 1, 2, . . . ,m.

(b) Generate negative tau-paths: determine the optimum tau-path for each of the
m + 1 data sets (X, (−1) × Y ), (X, (−1) × Y (1)), . . ., and (X, (−1) × Y (m)), and

denote themas τ− =
(
τ

(−)
2 , . . . , τ

(−)
k , . . . , τ

(−)
n

)
, τ (−l) =

(
τ

(−l)
2 , . . . , τ

(−l)
k , . . . ,

τ
(−l)
n

)
, l = 1, 2, · · · ,m.

3. (a) Calculate the p value for positive association. First, find the smallest upper
quantile q+ for τ+ along the path. Specifically, suppose q+(k) is the upper quantile
of τ

(+)
k among τ

(+1)
k , . . . , τ

(+m)
k , k = 2, . . . , n. Then q+ = min{q+(k), k =

2, . . . , n}. The p value, p+, is then defined as the proportion of all the tau-paths
(out of the total of m + 1) that have an upper quantile at least as small as q+ in at
least one of the positions (k = 2, . . . , n) along the path.
(b) Similarly, find the p value, p−, for negative association based on the m + 1
negative tau-paths τ− and τ (−l), l = 1, . . . ,m.
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4. (a) Assessing evidence of significance for positive association and obtaining
the associated subsample. If p+ ≤ α/2 for a predetermined pathwise signifi-
cance level α, then we declare the detection of significantly positive association
(in at least a subset of the sample). If positive association is detected, we find
k∗ =argmink{q+(k), k = 2, . . . , n}, and {p∗(1), . . . , p∗(k∗)} is the (sub)sample
that support the evidence of positive association, where p∗ is the optimal permu-
tation of the observed sample from the OEA.
(b) Assessing evidence of significance for negative association and obtaining the
associated subsample. Similarly as above, if p− ≤ α/2, then we assert detection
of negative association, and we find the subsample that supports such a detection.

Note that instead of finding the p values, one may construct the upper and lower
path-wise confidence bounds instead. The tau-path τ+ breaking the upper bound at
any position along the path will lead to the conclusion of positive association while
tau-path τ− breaking the lower bound at any position along the path will lead to the
conclusion of negative association. These two procedures are equivalent and will lead
to the same conclusion.

The above algorithm provides a procedure for detecting the existence of positive
and negative associations within a sample controlling for path-wise false positives.
Moreover, the observations that support the evidence of such associations are also
identified. However, to compare with existing methods that only detect monotonic
(but not necessarily linear) association, we also propose a slightly modified algorithm
that combines evidence fromboth positive andnegative associations. Thismodification
takes place in Steps 3 and 4 of the CEMCtp algorithm; details are given in Appendix
B. The R package for performing CEMCtp analysis can be downloaded from http://
www.stat.osu.edu/~statgen/SOFTWARE/CEMCtp.

2.5 Three Methods for Comparisons

2.5.1 Tau-Score Method

The CEMCtp algorithm as described in the previous section can be computationally
intensive as one needs to perform path-wise evaluation to control for false positives. As
such, we consider a variation, the tau-score method, CEMCts , in which the calculation
of p values is based on the tau-score, not the tau-path, and thus can be more compu-
tationally efficient. More specifically, in Step 3 of the algorithm, we first compute the
tau-scores T+, T (+l), l = 1, . . . ,m; the upper quantile of T+ among the m + 1 tau-
scores is then taken as the p value for detecting positive association. The p value for
detecting negative association can be found analogously. The procedure for assessing
overall (combined) evidence of association using CEMCts follows the same idea as
described in Appendix B.

2.5.2 Two Conventional Methods

In addition to CEMCts , we also compare CEMCtp with two conventional methods
for calculating correlation: Pearson’s correlation coefficient and Kendall’s tau. The
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assessment of significance for these two methods are based on the same permuted
samples as in the CEMCmethods to construct the underlying null distributions. Since
both methods are devised for detecting evidence of monotonic association in a homo-
geneous population, they are compared to the versions of CEMCts and CEMCtp that
are appropriate for assessment of overall evidence of association.

3 Simulation Study

3.1 Simulation Models and Settings

To evaluate the performance of CEMCtp, and to compare its performance with
CEMCts , Pearson correlation, and Kendall’s tau, we carried out a simulation study
based on a variety (a total of 16) of homogeneous/heterogeneous population settings.
Each of the 16 population settings were characterized by two distributions, with poten-
tially different association patterns to create subpopulations.One is a standard bivariate
normal distribution with density function

f (t1, t2) = |A|1/2
2π

exp

⎛

⎝−1

2

2,2∑

i, j=1

Ai, j ti t j

⎞

⎠ . (1)

The other is a standard bivariate t distribution with the degree of freedom being 1 and
the density function being

f (t1, t2) = |A|1/2
2π

⎛

⎝1 +
2,2∑

i, j=1

Ai, j ti t j

⎞

⎠

−3/2

. (2)

In both (1) and (2), A =
(
A1,1 A1,2
A2,1 A2,2

)

, and � = A−1 =
(
1 ρ

ρ 1

)

where ρ is

the correlation parameter. When ρ = 0, the two normally distributed variables are
independent, whereas the two t variables are still dependent although uncorrelated.

The 16 settings with various proportions of samples being positively associated,
negatively associated, or uncorrelated are given in Table 1. In the first 8 settings, the
samples are mixtures of positively correlated and uncorrelated samples. That is, for
each of these settings, there exists only one subset of the sample with the two variables
positively correlated. For example, in the first setting, there are a total of 60 pairs of
observations, amongwhich ten are sampled from a subpopulation depicted by a bivari-
ate normal or t distribution with a correlation coefficient of 0.9, and the remaining 50
are drawn from a subpopulation in which the two random variables are uncorrelated.
In the last 8 settings, negatively correlated samples are also included. In other words,
there are two subsets in the sample, one positively, while the other negatively, corre-
lated. For example, in setting 12, among the 120 pairs of observations, 40 are drawn
from a subpopulation in which the two random variables are positively associated
with a correlation of 0.9; 40 are sampled from another subpopulation where the two
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Table 1 Simulation settings
portraying various patterns of
population heterogeneity

a Settings 7 and 8 are in fact
from a homogeneous population
with all 60 samples positively
correlated

Setting Positive Negative Uncorrelated

No. ρ No. ρ No.

1 10 0.9 0 0 50

2 10 0.6 0 0 50

3 30 0.9 0 0 30

4 30 0.6 0 0 30

5 50 0.9 0 0 10

6 50 0.6 0 0 10

7a 60 0.9 0 0 0

8a 60 0.6 0 0 0

9 60 0.9 60 −0.6 0

10 80 0.9 40 −0.6 0

11 40 0.9 80 −0.6 0

12 40 0.9 40 −0.6 40

13 80 0.9 20 −0.6 20

14 20 0.9 80 −0.6 20

15 40 0.9 20 −0.6 60

16 20 0.9 40 −0.6 60

variables are negatively associated with a correlation of −0.6; and the remaining 40
are from yet another subpopulation in which the two variables are uncorrelated. Thus,
the sample in setting 12 comes from a heterogeneous population composed of three
homogeneous subpopulations. In addition, to obtain the type-I error rates, we also con-
sider two settings (not shown in Table 1), with either 60 (matching those in settings
1–8) or 120 (matching those in settings 9–16) pairs of uncorrelated observations.

3.2 Results for Detecting Association

Figure 1 depicts the performances of Pearson correlation, Kendall’s tau, CEMCts , and
CEMCtp for settings 1–8 when the sample is a mixture of positively correlated and
uncorrelated observations. Specifically, Fig. 1a shows the power to identify the exis-
tence of correlation among the normally distributed samples when correlation may
exist only in a subset. We can see that no matter which method is used, the power
increases as the proportion of correlated observations increases. The Pearson correla-
tion has higher power when the correlation is moderate (0.6). When the correlation is
strong (0.9), CEMCts and CEMCtp outperform the other two methods for all the mix-
ing proportions considered, although we note that the differences are all small. This
result is consistent with earlier results when Kendall’s tau and tau-path were com-
pared [10]. We hypothesize that this occurs because the estimated ordering is likely
to be highly variable with only moderate strength of association. On the other hand,
CEMCts and CEMCtp are better choices when there is a more highly associated sub-
population, even if the subpopulation is small. The type-I error rates are 0.039, 0.033,
0.043 and 0.05 for Pearson, Kendall, CEMCts , and CEMCtp, respectively, indicating
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Fig. 1 Power of detecting associations based on four measures: Pearson’s correlation coefficient, Kendall’s
tau, CEMCts , and CEMCtp for samples from mixtures of a normal distributions and b t distributions

that all the four methods have a well-controlled type-I error rate at the 5% nominal
level.

Figure 1b shows the power for identifying the existence of correlation among the
t distributed samples. Similar to the results for samples from the normal distributions,
the power of all four methods increases as the proportion of correlated pairs increases.
However, contrary to the normal results, CEMCts and CEMCtp give higher power
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than Pearson correlation or Kendall’s tau for both levels of correlation strength (0.6
and 0.9) and all the mixing proportions.

The type-I error rates are 0.052, 0.059, 0.037 and 0.044 for the four methods,
Pearson, Kendall, CEMCts , and CEMCtp, respectively. Even though CEMCts is more
computationally advantageous, its performance is largely on par with CEMCtp for the
simulation settings considered.

Figure 2 shows the results for settings 9–16 when the samples are mixtures of
positively correlated, negatively correlated, anduncorrelated pairs of observations. The
results for each of the eight settings are represented by the eight sets of circles, with the
center of each set depicting the corresponding setting. The (perpendicular) distances
from the center to the three sides (‘+”, “−” and “uncorrelated”) of the equilateral
triangle are the numbers of observations that are positively correlated (ρ = 0.9),
negatively correlated (ρ = −0.6) or uncorrelated, respectively. Note that they sum
to 120, as the total sample size is 120 for all the eight settings. For example, setting
9 has an equal number of positively and negatively correlated, but no uncorrelated,
observations. Thus, the center of the corresponding circles sits in the middle of the
“uncorrelated’ side, that is, with an equal distance (60) to both the “+” and the “−”
sides. The size (radius) of each circle shows the power of the corresponding method.

Figure 2a shows the power for identifying the existence of correlation among the
normally distributed samples. The circles on the right side of the triangle are generally
larger than those at symmetric positions on the left side, and the circles at the bottom
are generally larger than those on the top, implying that more samples with stronger
correlations increases the detection power for all the methods. The two circles each
with a radius close to 1on the right bottomcorner show that allmethods have the highest
power when most observations are correlated strongly in one direction. In almost all
the settings, CEMCts and CEMCtp obtain the same or higher power than Pearson’s
correlation and Kendall’s tau. This is because subsets with opposite directions may
cancel each other’s signals when Pearson correlation and Kendall’s tau are used to
summarize the evidence of association over the entire sample as a whole. CEMCts

and CEMCtp, on the other hand, are robust to mixtures of associations of different
directions. The type-I error rates are 0.037, 0.039, 0.028 and 0.037 for the fourmethods
in the same order as before, once again demonstrating the ability of all methods to
achieve the correct size.

Figure 2b shows the power for identifying the existence of correlation among the
t distributed samples. Similar to the results from the normally distributed settings,
all methods achieve higher power with more observations strongly correlated in one
direction. In particular, Pearson’s correlation, CEMCts and CEMCtp exhibit high
power consistently in several settings. In contrast, the power of Kendall’s tau varies
substantially from setting to setting. The type-I error rates are 0.052, 0.051, 0.052
and 0.037 for Pearson, Kendall, CEMCts , and CEMCtp, respectively. Contrary to the
results froma single correlated subsample,when there are twocorrelated subsamples of
different directions, the results fromCEMCts and CEMCtp can be a bit more different,
especially for the normal samples. In the five instances where there are appreciable
differences, CEMCtp has better power in four of them (settings 11, 12, and 16 in the
normal samples and setting 16 in the t sample).
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Fig. 2 Power for detecting associations of different directionalities based on four measures: Pearson’s
correlation coefficient, Kendall’s tau, CEMCts , and CEMCtp for samples from mixtures of a normal
distributions and b t distributions.

Finally, to show that our permutation procedure for obtaining the p values is effi-
cient, we also used samples simulated under the null settings to construct the reference
distribution for the test statistics. That is, we drew samples from uncorrelated normal
or t distributions instead of permuted samples to calculate the p values. The results
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corresponding to Figs. 1 and 2, are shown in Supplementary Figures S1–S4, from
which one can see that the results are very similar between those based on the null
samples and those based on the permuted samples.

3.3 CEMCt p Inference on Association with Directional Information

As we have already pointed out earlier, a feature of CEMCtp that separates it from the
rest is that it can detect existence of associations of opposite directionality in a sample
from a heterogeneous population. Recall that whether a sample is from a homogeneous
or a heterogeneous population is unknown, a priori, and thus detection power is an
issue that deserves further consideration. To better understand the detection power
of CEMCtp, we considered an expanded collection of settings (the first 6 columns
of Table 2), which includes the eight settings (9–16) in Table 1 that portray a mixed
sample of positively and negatively correlated observations.

The power for simultaneous detection of positive and negative correlations in the
same sample are given in the last four columns of Table 2. From the table, we can
see that when there are the same number of observations supporting associations in
both the positive and negative directions (settings 9a and 9c), there is a fairly even
power for detecting both types of associations for samples from the normal as well as
the t bivariate distributions. When there is strong association in one direction but only
weak association in the other direction, the power for detecting association can be quite
different. For example, in the situations where the number of associated observations
are the same or the stronger association is in fact supported by more observations
(settings 9, 9b, 10, 12, 12a, 13, and 15), the stronger association is detected with much
higher power, especially when the samples are from a mixture of normal distributions.
On the other hand, when the stronger association is supported by fewer observations,

Table 2 Simulation settings and the power for detecting associations using CEMCtp

Setting Positive Negative Uncor. Normal t

No. ρ No. ρ No. Posi. Nega. Posi. Nega.

9 60 0.9 60 −0.6 0 0.99 0.05 1.00 0.57

9a 60 0.9 60 −0.9 0 0.96 0.98 1.00 1.00

9b 60 0.6 60 −0.9 0 0.04 1.00 0.67 1.00

9c 60 0.6 60 −0.6 0 0.15 0.20 0.92 0.84

10 80 0.9 40 −0.6 0 1.00 0.00 1.00 0.08

11 40 0.9 80 −0.6 0 0.50 0.41 0.91 0.99

12 40 0.9 40 −0.6 40 0.78 0.05 1.00 0.55

12a 40 0.6 40 −0.9 40 0.05 0.85 0.70 0.99

13 80 0.9 20 −0.6 20 1.00 0.00 1.00 0.01

14 20 0.9 80 −0.6 20 0.02 0.77 0.36 1.00

15 40 0.9 20 −0.6 60 0.90 0.00 1.00 0.26

16 20 0.9 40 −0.6 60 0.17 0.11 0.79 0.92
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Fig. 3 Scatter plots of number of observations inferred to be associated versus number of correctly inferred
observations for samples from a mixture of t distributions. Left positive association; Right negative associ-
ation

the detection power may even out (as in settings 11 and 16) or can actually be swung to
the other directionwith extremely lopsided sample sizes (as in setting 14). In contrast to
the ability of CEMCtp for detecting associations in both directions in a heterogeneous
sample, the Pearson’s correlation and the standard Kendall’s tau measures may fail to
detect the overall association (e.g., see settings 11 and 12 in Fig. 2a and settings 11
and 16 in Fig. 2b). Overall, from Table 2, we can see that for each of the settings, the
sample from a mixture of t distributions tends to have higher power than that from a
mixture of normal distributions for detecting associations of both directions; in some
cases the power can be much larger. Once again, the results are practically the same
when p values were computed based on null samples rather than permuted samples
(Supplementary Table S1).

Another unique feature of CEMCtp is that, when positive and/or negative associa-
tions are detected, the observations that provide such evidence can be inferred as well.
To demonstrate this capability, we show the results for setting 12 when the samples
were generated from a mixture of t distributions. The scatter plots for the number
of inferred observations versus the number of correct observations (i.e., the inferred
observation is indeed generated from the corresponding distribution) when the asso-
ciation is detected are provided in Fig. 3. As seen from the figure, the observations
that were inferred to support the detected association, either positive or negative, may
contain some that were not actually generated from the corresponding distribution.
In fact, the ratio of inferred versus correct observations is about two to one, which is
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not surprising given the results presented in Figs. 1 and 2, as a guideline. Given that
the Pearson’s correlation has reasonably good power of detecting the overall associa-
tion, many of the unassociated observations may be inferred to be associated in either
direction. Results from the other settings painted similar pictures.

To further understand and visualize these results, in Fig. 4b we plotted a sample
dataset from setting 12 with the t-mixture. We can see that, excluding the point on the
bottom-left corner, the rest of the data points show a random cloud, which explains
the low power for standard Kendall’s tau (Fig. 2b). The higher power for Pearson’s
correlation appears to be driven by the influential point on the bottom-left corner,
creating an apparent positive linear association. On the other hand, CEMCtp was able
to identify a subset of observations that are positively associated and another subset that
are negatively associated, recovering the underlying setting. As seen from the figure,
a majority of the true positively correlated data points were correctly identified, while
there are a few uncorrelated or negatively correlated data points that were incorrectly
inferred to be in the positively correlated subsample, corroborating the results seen
in Fig. 3. On the other hand, although many of the negatively correlated data points
were also correctly identified, there are about one third of them that were not correctly
inferred, which is also not surprising given that the strength for negative association
(−0.6) is weaker than that for positive association (0.9). A sample dataset from setting
12 with the normal-mixture is also visualized to facilitate better understanding of the
result in Figs 2 and 3, and Table 2. One can see from Fig. 4a that there is little
information on association based on the whole set, leading to low power for the
standardKendall’s tau and the Pearson correlation. Further, a majority of the positively
and negatively correlated data points were correctly inferred, although many data
points from the uncorrelated subsample were incorrectly inferred to be negatively
associated.

4 A Real Data Analysis—Gene Network Inference

We considered NCI-60, which is a panel of 60 diverse human cancer cell lines used
by the National Cancer Institute (NCI) to study a variety of issues. The NCI-60 data
include the expression measures of 12,625 genes for each of the 60 cell lines, and can
be downloaded from an NCI-hosted FTP site [15]. Since biochemical functions are
determined largely by specific enzymes, genes in the same network may be turned on
or off differently in different cell lines. Thus, for each pair of genes, the positively
correlated expression (co-expression) or the negatively correlated expression patterns
may exist only in a subset of the cell lines. To investigate whether CEMCtp can
recover such heterogeneous network relationships that may have been missed by other
methods, we apply Pearson’s correlation, Kendall’s tau, CEMCts , and CEMCtp to the
data to identify potential gene pairs and to compare their performances. To be more
focused in our illustration and comparison, we first computed the Kendall’s tau for
every pair of genes and binned them into 20 groups according to the overall strength
of association: [−1,−0.9], (−0.9,−0.8], . . ., (−0.1, 0], (0, 0.1],. . ., and (0.9, 1]. We
then randomly selected 10pairs fromeachof the bins for investigation and comparisons
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Fig. 4 A sample dataset with three underlying subsamples (square uncorrelated; diamond positively
correlated; circle negatively correlated) and inferred positively correlated (+) and negatively correlated
(−) subsets for samples from mixtures of a normal distributions and b t distributions

of the methods. It turns out that only one pair has Kendall’s tau correlation lower than
−0.6, and thus we have a total of 161 pairs.

We visualize the results for the performance comparisons between CEMCtp and
the other methods using the scatter plots of their −log10(p value)’s. In Fig. 5, the left
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Fig. 5 Scatter plots of−log10(p value) for CEMCtp versus the same for each of the three comparisonmeth-
ods: Pearson correlation, Kendall’s tau, and CEMCts . Left positive association; Right negative association

column shows the results for detecting positive associations while the right column is
for the negatively associated ones. The horizontal and the vertical lines mark the value
−log10(0.05), thus a point located above the horizontal line or to the right of the vertical
line indicates that the pair of genes is identified to be correlated by the corresponding
method at the 5% significance level. As seen from the plots, when Kendall’s tau has a
very small absolute value |ρ| (say from−0.1 to 0.1), all methods generally regard them
as noise. On the other hand, when Kendall’s tau correlation has a moderately large
absolute value (say greater than 0.5), all themethods identify them as correlated genes.
Therefore, in the two extremes, all methods yield similar results. The more interesting
cases are when the absolute value of the overall Kendall’s tau correlation is moderately
small. In those situations, CEMCtp generally has a higher chance of identifying them
to be correlated. This is expected, as CEMCtp takes the underlying substructure of the
sample, i.e., subset correlations, into consideration, leading to increased power when
there are subsets with strong correlations. In contrast, such signals may be washed out
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Fig. 6 A network featuring a pair of genes: ATG2A and SHB. a Two sub-networks, each for ATG2A and
SHB, are shown as those connected by solid lines. The significantly positive association between ATG2A
and SHB detected by CEMCtp is depicted by the dashed line. b The detected subsample showing positive
correlation is highlighted in the scatterplot of all data points

when a measure is forced to consider the whole set, such as the Pearson’s correlation
or the standard Kendall’s tau, as illustrated in two simulated datasets in Fig. 4.

We illustrate the added values of the results from CEMCtp for understanding gene
networks using STRING [16]. The STRING Database (http://string-db.org/) is com-
prised of known and predicted protein interactions. The interactions include direct
(physical) and indirect (functional) associations; they are derived from four sources:
genomic context, high-throughput experiments, (conserved) co-expression, and previ-
ous knowledge. As it integrates interaction data from these sources for a large number
of organisms, connection between some parts of genes that are present only on a subset
of observations might have been missed.

We illustrate the results using three examples, pairs ATG2A & SHB, APBA1 &
CRK, andPPP6C&TOP3B.Each of the twogenes in thefirst pair belongs to a different
network (connected by solid lines in Fig. 6a). Applications of the four methods to this
pair of genes yielded a positive association at the 5% significance level by CEMCtp

(p value = 0.019), but not by any of the other methods. The result from CEMCtp

indicates that the expression levels between these two genes are correlated only in 25
of the 60 cell lines. By taking the possibility of subset correlations into consideration,
CEMCtp appears to be able to uncover the relationship (connected by the dotted line
in Fig. 6a) and identify the cell lines that contribute to the detected correlation. The
connection of these two subunits into a single network is made possible by considering
subset relationships, which appears to have been lost when the full set is considered.
To see this more clearly, we plotted the expression levels of ATG2A (x-axis) versus
that of SHB (y-axis) for each of the 60 cell lines (Fig. 6b). It is easily seen that there is
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Fig. 7 A network featuring a pair of genes: PPP6C and TOP3B. a The significant association between
PPP6C and TOP3B detected by CEMCtp is depicted by the dashed arc. b The detected subsample showing
positive correlation is highlighted in the scatterplot of all data points.

little linear or nonlinear correlation between the expression levels of these two genes.
Nevertheless, CEMCtp was able to detect a subset of positively correlated cell lines,
showcasing its ability for mining hidden evidence.

Similarly, for gene pair APBA1 and CRK, CEMCtp is the only test that leads to
the detection of a significant association at the 5% level (p value = 0.033). Further,
the subset correlation appears to be negative, with 17 of the cell lines providing the
supporting evidence. Visualization of the network relationship is provided in Sup-
plementary Figure S5(a), together with the scatterplot of the expression data and the
subset identified to be negatively correlated as given in Supplementary Figure S5(b).
For the pair PPP6C and TOP3B, although it is not strictly significant at the 5% level
(p value = 0.0518) for CEMCtp, the evidence of significance is nonetheless much
greater than the rest of the methods (all p values> 0.20). Figure 7a (solid lines) shows
that both of these two genes are in the same network, i.e., both of them have protein
interactions with gene UBC. This added association (dashed arc in Fig. 7a now estab-
lishes their direct relationship with one another. The expression data over the 60 cell
lines and the correlated subset are depicted in Fig. 7b.

5 Discussion

In real-world problems of studying relationships between two variables, such as in the
study of gene networks, the scenario can be much more complicated than a monotone
relationship prevailing in the entire sample of observed data, as the underlying pop-
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ulation from which the data are drawn can be heterogeneous. However, traditional
measures of correlation typically assume that the underlying population is homoge-
neous (even if such an assumption is rarely stated explicitly), and as such, the evidence
of correlation is assessed using all observations with equal weights. A recently pro-
posed measure, tau-path, was able to detect association that exists only in a subset
of the sample, but the more complex scenario depicting the existence of two sub-
sets with opposite directions of association (i.e., both positive and negative) was not
addressed. Further, the algorithm proposed for detecting the optimal tau-path was
greedy in nature, and as such, optimality in any sense is not guaranteed. To fill this
void, in this paper, we extend the tau-path methodology to accommodate the more
complex scenario, and we propose the adaption of a cross entropy Monte Carlo algo-
rithm to obtain an “optimal” tau-path. The optimality is in the sense that the tau-path
will achieve the maximum of the objective criterion when the number of iterations of
the CEMC algorithm goes to infinity [17]. The objective criterion, the tau-score, is the
weighted average of the pairwise concordance/discordance values, with the weight for
each value being “proportional” to its information for providing supporting evidence
of association in concert with the other observations.

In evaluating the convergence of the CEMC algorithm, we require that the average
of the absolute differences in the entries of the probability matrix (v) be smaller than
0.001. Based on 600 randomly selected datasets, this criterion was reached between
134–162 iterations generated from the mixtures of normal distributions, and just a
bit longer for samples from the mixtures of t distributions, at 142–167 iterations. At
convergence, the v matrix typically has entries that are close to 0 or 1 (recall that the
probabilities in each column sum to 1) (Figure S6). A columnwith one 1 (or very close
to 1) and the rest being 0 (or very close to 0) indicates that the particular placement
of the observation at that position is definitive, as we see in the first few columns of
Figure S6. Thismay helpwith visualizing the informativeness of the data and detecting
where information on ordering starts to degrade.

Our extensive simulation study substantiates our expectation of the aptness of
CEMCtp for detecting associations under various scenarios. When there is a subset
with strong correlation, when there are subsets with opposite correlation directions,
or when the distributions of the two variables have heavier tails, CEMCtp achieves
higher power than Kendall’s tau or Pearson’s correlation coefficient, which only mea-
sure overall correlation. More specifically, when there is a monotonic relationship in
the entire sample, there is little loss of power for CEMCtp (Figs. 1 and 2). In fact,
CEMCtp can even have higher powerwhen the distributions of the variables have heav-
ier tails. On the other hand, when there are subset correlations of opposite directions,
CEMCtp is seen to always have higher power (Fig. 2). The increase in power does not
come at the expense of increased type I errors. More specifically, in our CEMCtp and
CEMCts algorithms, we control for path-wise type-I errors, leading to results with
actual type-I error rates similar to the nominal values, as we demonstrated in our sim-
ulation study. In addition, CEMCtp has the capability of inferring the observations that
support a detected correlation, although our simulation study indicates that the size
of the subsample can be inflated as it may include observations from an uncorrelated
subsample. We illustrate the utility of CEMCtp in a real data analysis by showing its
ability to uncover potential relationships that appear to only exist in a subset. Examples
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show that filling in the “missing links” may provide a more comprehensive view of
the gene networks. However, the results need experimental validations.

Despite the general advantage of CEMCtp, it is much more computationally inten-
sive than tests based on Kendall’s tau or Pearson’s correlation coefficient. Its variant,
CEMCts , is seen to bemore computationally efficient. For example, for a settingwhere
the samples were generated from a mixture of three normal distributions, it took 28.5
and 7.9 s to complete the analysis and obtain the p value with 500 permuted samples
for CEMCtp and CEMCts , respectively. When the data were generated from a mix-
ture of t distributions, the times increase to, respectively, 52.6 and 32.0 s. Recall that
CEMCts differs from CEMCtp only in steps 3 and 4, which took a fraction of a second
to complete for CEMCts while it took over 20 s for CEMCtp, essentially accounting
for the differences in their computational times. For the computation of Kendall’s tau
and Pearson’s correlation coefficients, each took less than 1s. These computations
were performed on a supercomputer cluster with 540 nodes, 12 cores/node, 48GB of
memory/node, and Intel Xeon x5650 CPUs. However, although CEMCts has similar
power as CEMCtp in some situations, it does not provide information on the subset of
observations underlying a detected association. As such, it is warranted to search for a
more computationally efficient procedure that has similar properties as CEMCtp (e.g.,
asymptotic optimality, identification of subsamples). Such a computational improve-
ment is crucial for analyzing large samples upward of thousands of observations, such
as those contained in The Cancer Genome Atlas (TCGA) [18] and in the GTEx data-
base [4]. A potential strategy is to borrow the top-K CEMC idea and software [19]
for finding a subsample with the strongest signal for detecting association in each
direction. For a large sample, there can be substantial noise, and therefore the top-K
strategy, with a reasonable choice of K to facilitate computation, may prove to be effi-
cient without much loss of information. We have explored this idea in a preliminary
analysis of a breast invasive carcinoma dataset with over 1000 individuals from TCGA
[20]. Although the results are promising, much more work is needed to formalize the
top-K CEMC procedure and to assess its performance.

Acknowledgements The authors would like to thank the two anonymous reviewers for their constructive
comments and suggestions. This work was supported in part by the National Science Foundation grants
DMS-1220772. Th authors would also like to acknowledge the allocation of computing times from the
Ohio Supercomputer Center.

Appendices

Appendix A: CEMC Algorithm

Different from an exhaustive search that places a discrete uniform distribution on all
the possible candidate orders, the idea of finding z∗ using CEMC is to place more and
more of its probabilitymass on the z’s in a neighborhood of the z∗. This is accomplished
by iteratively updating the parameter matrix v. Note that a z being in a neighborhood
of z∗ means that the corresponding value of the objective function, the tau-score
T = T ( f (z)) in this case, is close to the maximum T ∗ = T ( f (z∗)). Suppose v is the
current estimate of the parameter matrix. To find the next v′ so that its tau-score is
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getting even closer to the optimal T ∗, we cast the problem as finding a good importance
sampling distribution, Pv′(z), for estimating probability A = Pv[T ( f (z) ≥ a], which
can be rare if constant a is set to be close to T ∗. The choice of a will be discussed in
more detail in the algorithm. The ideal importance sampling distribution is

Q∗(z) = I [T ( f (z)) ≥ a]Pv(z)
A

,

but this is not obtainable since it involves the unknown probability A. However, we
can obtain a good sampling distribution Pv′(z) by minimizing the cross entropy (i.e.,
the Kullback–Leibler distance) between it and the ideal but unobtainable distribution
Q∗(z), CE(Pv′(z), Q∗(z)). This minimization can be achieved since it is equivalent to
maximizing

Ev{I [T ( f (x)) ≥ a]logPv′(z)}, (3)

which is now free of the unknown probability A.
Wefind vnew thatmaximizes the expectation in (3) by aMonteCarlo approximation.

Suppose zi , i = 1, . . . , N , is a sample drawn from Pv(z) with the current parameter
specification v, with their corresponding permutations denoted as pi = f (zi ), i =
1, . . . , N . Then the formula to get the update for the next parameter matrix v′ is

vnew = argmax
v′

{
1

N

N∑

i=1

I [T ( f (zi ) ≥ a]logPv′(zi )
}

. (4)

It has been shown that when the threshold value a is also updated iteratively, it will
converge to a value (a∞) that is close to T ∗ [17]. At the same time, Pv0(z), Pv1(z), . . . ,
will converge to a distribution that places most of its probability mass on the z’s
that satisfy T

(
f (z

) ≥ a∞. As suggested [14], in practice, the weighted averages of
v and vnew as v′ can better balance the rate of convergence and the chance of not
being trapped in a local minimum, which is adopted in the following Order Explicit
Algorithm (OEA).

The OEA Algorithm

1. Set v0 with each v0jr ∈ (0, 1) such that
∑

j p
0
jr = 1, r = 1, . . . , n. For instance,

p0jr = 1/n for all the j and r indicates so that each observation in the sample
may be arranged into each position equally likely. Other choices that make use of
prior information, if such is available, may also be constructed. We then draw N
realizations from this initial distribution. Set t = 0.

2. Keep the N1(<N ) realizations with the largest values of the tau-scores from the
previous iteration and draw zi , i = N1 + 1, . . . , N from Pvt (z) to form a new
sample of N realizations. From this combined sample, we find the corresponding
permutations and their tau-scores, pi and T (pi ), i = 1, . . . , N . Let at be the
sample upper q-quantile of the tau-scores.
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3. Using the sample we update the parameter vector vt+1 as follows: vt+1 = (1 −
γ )vt +γ vnew, where vnew is as defined in (4) and 0 < γ ≤ 1 is a weight parameter
that is typically set to be 1/2.

4. If ‖vt+1−vt‖ < ε, thenwe output the largest tau-score value and the corresponding
tau-path. Otherwise we set t = t + 1 and go back to step 2.

Appendix B: Detection of Overall Subset Association

The CEMCtp algorithm presented in Sect. 2.4 is for simultaneous, yet separate,
detection of positive and negative associations, and importantly, the identifications
of subsamples that lead to such detections. However, for comparison with traditional
association measures, we also propose the following overall association detection
algorithm to facilitate such a task. The first two steps are the same as in the CEMCtp

algorithm. However, Step 3 for calculating the p value (there will be only one overall
p value) is different, which is given below. Step 4 is also different as we do not need
to split the nominal significance level between the positive and negative associations.

3. Find the smallest upper quantile q+ for τ+ along the path. We also find the small-
est upper quantile q(+l) for each of the tau-paths, τ (+l), l = 1, . . . ,m, from the
permuted data. We find q− and q(−l), l = 1, . . . ,m, similarly. The overall p value
for assessing subset association is the lower quantile of min{q+, q−} among the
set of values {min{q+, q−},min{q(+l), q(−l)}, l = 1, . . . ,m}.

4. If the overall p value is less than α, the predetermined significance level, then the
sample is said to exhibit significant evidence of association in either the full, or a
subsample.

As seen from the above steps, the assessment of overall evidence of association basi-
cally considers both positive and negative associations and synthesizes the information
to provide the stronger evidence.

The revised Steps 3 and 4 can also be similarly worked out for CEMCts for an
overall assessment of subset association.
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